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LIQUID CRYSTALS, 1990, VOL. 7 ,  No. 3, 315-334 

Defect controlled dynamics of nematic liquids 

by ALEJANDRO D. REY 
Department of Chemical Engineering, McGill University, Montreal, 

Quebec H3A 2A7, Canada 

(Received 7 December 1989; accepted 6 October 1989) 

The long time dynamical response of a nematic liquid exhibiting banded 
textures (inversion walls) during the twist Freedericksz transition is presented. A 
dynamical model of approach to eq-ilibrium through defect interaction and the 
resulting dissolution of the banded textures is presented. A linear stability analysis 
shows that splay-bend inversion wall defects are unstable to  two dimensional 
infinitesimal perturbations. A model of inversion wall segment collapse with 
production of a disclination line pair is given. The energy-momentum tensor gives 
the force of interaction between inversion walls and disclination lines. A perturba- 
tion analysis gives the evolution of the director field in closed form. Entropy 
production gives the velocity of each line. The growth law governing the wall 
dissolution is given. 

1. Introduction 
Transient periodic textures are usually present in nematic polymers, lyotropic 

nematics, and some low molar mass nematics when subjected to orienting magnetic 
fields of sufficient strength. These periodic textures, also known as banded textures, 
are not stable and eventually disappear. The short time behaviour of band formation 
during magnetic reorientation has been extensively studied, experimentally [ 1-71, and 
theoretically [8-141, and is well understood. The long time behaviour of band dis- 
appearance has been less studied experimentally [ I ,  151, and there is no analysis, to 
the authors knowledge, of this phenomena. 

The experimental evidence indicates that the periodic textures are transient and 
metastable, and that the true equilibrium state is, neglecting wall regions, a homo- 
geneous texture. This paper presents a model of the long time response of nematic 
liquids exhibiting periodic textures during magnetic reorientation. The analysis 
explains how the metastable banded textures, formed at early times, evolve and 
eventually disappear, leaving behind a homogeneous texture. It will be shown that the 
mechanics of banded texture’s disappearance are governed by defect interactions. We 
restrict the analysis to the geometrical arrangement that produces the twist 
Freedericksz transition [16, 171. We expect the analysis to be applicable to nematic 
polymers, lyotropic nematics, and low molar mass nematics exhibiting periodic 
textures during magnetic reorientation. 

Nematic liquids are diamagnetic and viscoelastic. The average molecular orienta- 
tion is described by a unit vector n, whose direction is affected by the presence of 
electromagnetic fields, flow fields, and bounding surfaces. The liquid responds to the 
above orienting fields through its anisotropic magnetic susceptibility, anisotropic 
viscosities, and curvature elasticity. If a nematic liquid has a positive anisotropic 
magnetic susceptibility a sufficiently high magnetic field will tend to co-align the 

0267-8292/90 $3.00 0 1990 Taylor & Francis Ltd 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
1
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



316 A. D. Rey 

director everywhere except in a small region near the surfaces [16, 171. A transient 
periodic response during magnetic reorientation gives rise to banded textures when 
the material is viewed under polarized light. This is a common phenomena in nematics 
when an oriented sample is subjected to a sufficiently strong field transverse to the 
initial uniform orientation. This periodic response is due to a coupling between fluid 
flow and director reorientation, in which opposed rotating regions produce shear 
flows characterized by lower viscosities than those in pure rotation. 

Another characteristic nematic phenomena relevant to this work are the pro- 
duction and interaction of defects [16, 181. Singular defects are described by strength 
and dimension. The strength of a defect quantifies the amount of distortion in 
the director field. In addition to singular lines and points defects, nematic liquids 
exhibit non-singular inversion wall defects. Singular and non-singular defects 
interact with each other and with the bounding surfaces. Inversion wall-disclination 
line interactions lead to the displacement of the disclination line in the direction 
of the inversion wall, while line-line interactions lead to their mutual attraction 
or repulsion according to whether their strengths have different or equal signs [I 6 ,  181 
respectively. 

Recently it has been shown that the banded textures are in fact splay-bend 
inversion walls [ 141. These inversion walls contain continuous but large molecular 
orientation gradients within a small length and we can expect that they became 
unstable at large magnetic field intensities. In this work we show that instability of a 
splay-bend wall (band) to localized small wave length fluctuations results in the 
production of a disclination line pair of strength & 1/2 and in the collapse of a 
splay-bend inversion wall segment. Experimental evidence confirms the existence of 
this phenomena, known by the name of ‘pincement’ [ l ,  16, 19, 201. The disclination 
line pair interacts with the surrounding splay-bend inversion wall and the resulting 
director field will evolve to minimize the magnetic and elastic free energy. The defect 
interaction (inversion wall-disclination line pair) controls the dynamics of the decay 
from the metastable state (banded texture) towards the true equilibrium state 
(homogeneous texture). 

In this work we use the Leslie-Ericksen (L-E) theory of nematic continua [21,22] 
to describe the temporal evolution of the macroscopic orientation field, the produc- 
tion and interaction of splay-bend inversion walls and line defects. In $2 we give a 
brief classification of defects that are solutions to the L-E equations. In $3 we briefly 
describe the twist Freedericksz transition and the formation of splay-bend inversion 
wall defects. We show that splay-bend walls are linearly unstable to two dimensional 
out-of-plane infinitesimal perturbations and result in a splay-bend inversion wall 
segment collapse with the production of a disclination line pair of strength + 1/2. In 
44 we show, using the energy-momentum tensor, that a disclination line embedded in 
a splay-bend inversion wall is subjected to a pulling force equal to the surface tension 
of the inversion wall. A perturbation solution, valid for weak fields, gives the evolving 
director field in the proximity of the line. Entropy production is used to calculate the 
velocity of the line, and the time required for the wall dissolution. In 45 the analysis 
is extended to a disclination pair embedded in a splay-bend inversion wall. We present 
closed form expressions for the velocity of each line, and the forces acting on each line, 
and obtain the growth law governing the inversion wall disappearance. Finally, we 
discuss the results within the context of nucleation and growth phenomena, and 
present expressions for the nucleation rates, the critical droplet radius, and energy of 
activation. 
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Defect controlled dynamics 317 

2. Defect solutions to the Leslie-Ericksen equations 
The free energy density of elastic deformation, W, is given in the L-E theory by 

(1) 
where K, ,  , K22, and K,, are the elastic constants for splay, twist, and bend, respectively. 
The kinematic variables are the velocity, v, and the director, n. The momentum and 
director balance equations, in the absence of bulk flow and bulk external forces, 
reduce to 

2W = K,,(V.n)* + K2,(n-V x n)'+ K3,1/n x V x nil2 

0 = tJI.1 (2) 

0 = G, + g, + q,.J (3) 

and 

where t and 71 are the bulk and director stress tensors, respectively. G is the external 
director body force, and g is the intrinsic director body force. The constitutive 
equations, in the absence of bulk flow reduce to 

t,l = -p,6,, + til + u2nl + a3n,h1, (4) 

where ti1 is the Ericksen stress tensor that introduces the elastic effects on the stress 
field, A, = u3 - a2 is the rotational viscosity, and u2 and u3 are two Leslie viscosity 
coefficients. The scalar functions -po + W, y ,  and the vector function f l  arise because 
of the constraints of incompressibility and director unit length. The superposed dot 
on the director denotes its material derivative. 

Inversion walls are steady one dimensional solutions to the L-E equations of 
nematics subjected to homogeneous magnetic fields, and also to converging flows [23]. 
The walls arise due to the degeneracy of reorientation when a nematic is subjected to 
an orienting field. Using Cartesian (x, z )  coordinates, the equation for the director n 
field, assuming that n,r = sin8, n, = cos8, in the presence of a magnetic field 
H = ( H ,  0) is 

(8) 
a2 8 
az2 K -  + XaH2sin8cos8 = 0. 

This equation with the following boundary conditions: 8( - m) = + (n/2); 
8( + m) = - ( 4 2 )  admits an inversion wall solution [24] given by 

8(z) = -2 tan-' exp[z J( q)] + z, 71 
(9) 

where xa is the anisotropic magnetic susceptibility. As the director traverses the wall, 
it rotates by 71 radians within a spatial length do f  the order J ( K / x Z H 2 ) .  Figure 1 give 
an schematic of three common wa!ls, the splay-bend walls and the twist wall. Using 
the one constant approximation ( K  = K , ,  = K22 = K33) equation (9) describes the 
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318 A. D. Rey 

(a) 

(C) 
Figure 1 .  Schematic diagrams of inversion walls. (u) Twist wall. (b) Splay-bend wall parallel 

to H .  (c) Splay-bend wall perpendicular to H .  H is the magnetic field strength, and d is 
the wall thickness. 

director field of the three walls. In addition to two dimensional non-singular defects, 
steady planar singular director fields are also solutions to the L-E equations. Again, 
using the one constant approximation, the governing Laplace equation [25] 

V28 = 0 (10) 

admits singular solutions of the form 

(1 1 a) 
2 

X 
8 = Stan- ' -  + U ,  

m 
2 

s =  f--, 
where S is the strength of the disclination, U is a constant, and m is a integer. The 
line is along the - y direction and the director jumps by an integral multiple of 7-1 

radians as a circuit is traversed around it. Figures 2 shows the director pattern in the 
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Defect controlled dynamics 319 

s = + 112 

(a) 

&- I)@ 
s = -112 

(b) 

( 4  (4 
Figure 2. Director patterns in the proximity of common disclinations. 

proximity of some common disclination lines. If the disclination line travels in the x- 
direction with a small constant velocity v ,  due to an elastic interaction, the director 
field 

where t is time, is a good [26] approximation to 

In fact equation (1 1 c) is the first order term in a perturbation solution of equation 
( 1  1 d ) .  (Higher order terms can be obtained using the method shown in $4). In the 
presence of orienting magnetic fields and bounding surfaces, the dynamics of a planar 
director field, in the one constant approximation, satisfies 
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3 20 A. I). Rey 

The above equation is the balance of the elastic, magnetic, and rotational torques, 
respectively, acting on the director. Equations (8) and (10) are particular cases of 
equation (12) and their solutions are also particular solutions to equation (12). The 
inversion wall solution (equation (9)) is a steady state z-dependent solution of 
equation (12). The static disclination line solution (equation (1 1 a)) is a steady state 
solution of equation (12) for vanishing field strengths. The moving disclination line 
solution (equation (1 I c)) is a first order approximation to equation (12) for vanishing 
field strengths. We shall obtain a solution of equation (12), valid for weak fields, that 
contains static inversion walls and moving disclination lines. We conclude that the 
L-E theory can model the evolution of a director field containing inversion walls and 
travelling disclination lines. 

3. Splay-bend inversion wall stability in the twist Freedericksz transition of a 
nematic liquid 

The periodic twist Freedericksz transition is best represented in Cartesian coor- 
dinates (x, y ,  z). The initial state is one of uniform alignment in the z-direction with 
a director field n, = (0, 0, 1). At time t = 0 a uniform magnetic field is imposed in 
the x-direction H = ( H ,  0, 0). The x-z plane is assumed to be of infinite extent. If one 
assumes a director field of the form: n = (sine, 0, cosO), where Q ( y ,  z, t )  describes 
the in-plane angle of the director relative to the initial orientation, and a velocity field 

= (u, 0, 0) then the steady state solutions to the full L-E equations are splay-bend 
inversion walls [ 141. A transient optical microscopy simulation using the L-E 
equations describe the formation of the banded textures [14], in agreement with 
experiments [ 151. 

As already stated the periodic response during the twist Freedericksz transition is 
due to the strong coupling between fluid flow and director reorientation, in which 
opposed rotating regions produce shear flows characterized by lower viscosities than 
those in pure rotation. This kinematic mechanism favors short wave lengths, but short 
wave lengths increase the elastic energy. The competing effects find an optimal 
balance, resulting in a fastest growing mode [3]. 

The lowest energy state is achieved by minimizing the elastic and magnetic 
energies. Neglecting the bounding surfaces, this obtains with a director field co-linear 
with the imposed magnetic field. But the system is driven to a high energy metastable 
state by the formation of splay-bend wall defects. To lower the elastic energy, the 
splay-bend inversion walls can evolve into lower energy twist walls. The twist inver- 
sion walls still contain large magnetic and elastic energy, and a collapse by the 
production of lines is expected. A more plausible scenario is that a series of wall 
segments can collapse by the production of disclination pairs, and subsequently the 
line pairs will interact with the rest of the inversion wall. The interaction leads to the 
displacement of the lines, and this displacement dissolves the inversion wall, leaving 
behind a homogeneous director field. This is analogous to nucleation and growth 
phenomena during the decay from a metastable state in a first order phase transition 
for a non-conserved order parameter system [27]. The system becomes unstable to 
small wavelength fluctuations and decays by the formation and growth of droplets 
(collapsed inversion wall segments) larger than a critical size. 

We now turn to the linear stability analysis of splay-bend walls appearing during 
the twist Freedericksz transition, allowing for anisotropic elasticity. We assume a 
director O(z) distribution describing a wall in the x-direction due to the presence of 
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Defect controlled dynamics 321 

a magnetic field H = ( H ,  0, 0) of sufficient strength, and impose in- and out-of-plane 
periodic two dimensional perturbations $(x, z ,  t )  and {(x, z ,  t )  respectively, resulting 
in a director field n(x, z ,  t )  given by 

n, = sin8 + $cos6, 

nu = 5 ,  
II, = cos6 - $sin@. 

Substituting this director field into equation (3), with the external director body force 
given by G, = x,H,H,n,, retaining only linear terms, the evolution equation for the 
twist component <(x, z ,  t )  becomes 

a t  
= 2,  - 9  

at 

(14) 

A(@( + B(o)<, + c(8>5, + D(8)5,, + E(8)5,, + F(@)5,= - xaH2t 

where the expressions for the coefficients A, B, C, D, E, and Fa re  given in Appendix 
I. The boundary conditions are 

5 = 0 for all x, z * f co, ( 1 5 4  

5 = 0 for x = 0, L and all z.  (15h)  

Equation (14) is parabolic with position dependent coefficients and must have 
solutions of the form 

5 = exp(st)f(x, 4. (16) 
It is convenient to scale the z-direction with the thickness of the splay-bend inversion 
wall d = H-’ J(K/xa), and the x-direction with the half wave-length L of the per- 
turbation. In that case the evolution equation (14) becomes 

af af a’f 
az a2 az2 L2d2 [ A  - xaH2 - L,s] f + L2dB + Ld2C - + L 2 D  - 

a2.f a’f 
ax2 axaz + d 2 E - +  LdF- = 0 

where 2 = x/L, and Z = z/d.  This is an eigenvalue problem for the growth rate s. 
Steady solutions given by equation (9) will be unstable to out-of-plane two dimen- 
sional perturbations if any eigenvalue is positive. Marginal stability is defined by 
s = 0. 

We use the linear approximation to the steady state wall profile to simplify the 
analysis 

in which case the boundary conditions given by equation (1 5 a) are replaced by 

t = O  at Z = O , 1 .  (19) 

A spectral method [28] can be used to obtain approximate eigenfunctions. A double 
odd periodic expansion 

N N  .. .. 
f” = 1 ajksinJrc2sin kn2 

j = l  k = l  
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322 A. D. Rey 

approximates f in an integral sense if the coefficient set ajk satisfies 

Io' lo' [Rjk sin 1n.Z sin mnZ] d2dZ = 0, 

where R,k, the residual, is the left hand side of equation (17) with f a  replacing f. 
Equation (21) results in a matrix equation for the coefficient set 

Mlrnjkajk 0 (22) 

The homogeneous matrix equation (22) has non-trivial solutions only if det (M) = 0. 
The sufficient condition for instability (s 2 0) is obtained from this equation. For a 
one term ( N  = 1)  double expansion the condition is 

(23) 
7T2 d2 
4 n2(1 - K22/K33) 3 1 + - (1 + 3K22/K33) z. 

The ordering of the successive approximations establishes that the first eigenvalue is 
the most unstable [28]. In obtaining the threshold we have used the approximation 
d2  = K 3 3 1 ~ a H 2  instead of using an average of the splay and bend constants. This is 
a good approximation for most nematics [16, 17, 291. 

L - 
H - Id 

(c) 

Figure 3. Schematic of a splay-bend wall dissolution. (a) The wall is unstable to two 
dimensional perturbations. (b)  The non-linear evolution results in the nucleation of 
a & 1/2 disclination pair. (c )  The wall pulls the lines apart, the velocity of the lines 
scales with the inverse of the wall thickness. L is the halfwave length of the perturbation 
along the wall. 
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Defect controlled dynamics 323 

For sufficiently strong fields, the wall thickness may be small enough to make 
the inequality, given by equation (23), hold. The perturbation is periodic in the 
x-direction, and the length L is the segment of the wall that collapses by the appear- 
ance of an out-of-plane component. The out-of-plane component allows the director 
in the centre region of the collapsed wall to rotate in the direction of the applied field, 
thereby lowering the energy of the system. It is then plausible to assert that the 
non-linear resolution of the instability results in the collapse of a wall segment with 
a subsequent production of a disclination pair of strength f 1/2 as seen experi- 
mentally. Figures 3 (a),  (b), (c)  show a schematic of the evolution of the instability, the 
nucleation of a disclination pair, and the replacement of the wall by parallel align- 
ment. A further discussion of the stability threshold for actual nematics will be given 
in §b, following the other essentials of the analysis. 

4. Splay-bend wall-disclination line dynamics 
The interruption of the wall by the presence of the disclination pair leads to the 

relative displacement of the line due to the pulling force exerted by the wall. If a line 
defect is moving, it is because of the pulling force due to a director field distortion 
enclosing the disclination. Therefore, to calculate the force we need to know the 
director pattern on a surface embracing the disclination. Once the director field and 
the force on the line are known, the velocity of the line follows from standard 
dissipative arguments. In this section we treat the interaction of a single disclination 
line embedded in a splay-bend inversion wall, and treat the wall-disclination pair 
interaction in the next one. 

As shown by Eshelby [30], the integral of the energy-momentum tensor over a 
surface embracing a defect gives the Peach-Koehler force acting on it by the material 
outside the enclosing surface. For nematic continua the force is given by 

where S is a surface, or a circuit in two dimensions, enclosing the defect, and S’ is the 
component of the area vector in the direction of the normal unit vector vJ .  The 
expression between the brackets is the energy-momentum tensor. It turns out that the 
energy-momentum tensor is equal to the Ericksen stress tensor rEJ,  given by equation 
( 5 ) ,  and therefore the force is real, and not a configurational fictitious force [30]. 

A schematic of a disclination line of strength S = - 1/2 embedded in a splay- 
bend inversion wall is shown in figure 4 (a). We adopt a rectangular coordinate system 
fixed on the line. The magnetic and director fields are: H = ( H ,  0, 0) and n = 
(sin 0, 0, cos 0), respectively. The boundary conditions are 

IL 
8 = - - for all x, z +co, 

8 = + -  for x *  -a,z G O ,  

2 
71 

2 
71 

8 = + - for all x, z -a. 2 
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324 A. D. Rey 

(h)  
Figure 4. (a) Director field of a splay-bend inversion wall with a disclination line of strength 

S = - 1/2 embedded in it. The coordinate system is fixed on the line. The magnetic field 
is in the x, -direction. (b) The inversion wall pulls the line in the +x, -direction. As the 
line travels, the inversion wall is replaced by parallel alignment. 

We perform the integration using a suitable enclosing circuit along which the 
director field is known. Assuming that K, ,  = KT7 and that n, = sin 0, n, = cos 0, 
we integrate equation (24) around a square L(a) enclosing the disclination cut and let 
its sides a go to infinity. Using the boundary conditions given by equations (25)-(29) 
we obtain Fz = 0 and 

(30 a )  

The details are given in Appendix 2. The surface tension B of the wall is the integral 
of the free energy density W across the wall, 

+a, 

B = j-, W d z  (30 h)  

whose value is precisely that given by equation (30a) if we define the wall thickness 
d by d2 = K/xaH2,  as calculated in [24]. We conclude that the wall surface tension or 
compressive force per unit length pulls, due to the wall sudden interruption, the 
disclination, causing it to move in the direction of the wall (+ x-direction) with a 
constant velocity v that scales with the inverse of the wall thickness. The displacement 
of the disclination line replaces sharp orientation gradients (inversion wall) with 
homogeneous parallel alignment, as shown in figure 4 (6). 

To calculate the velocity of the disclination line we need the director field corre- 
sponding to a splay-bend wall-disclination line configuration. For generality we treat 
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Defect controlled dynamics 325 

a disclination of strength S.  Since we look for a travelling disclination line solution, 
it is convenient to use a moving coordinate system fixed on the line 

x, = x - vt, 
z =  Z. 

In this coordinate system equation (12) becomes 

1 A , ~  ao 
d2 K ax,’ V28 + -sinocosd = - -- 

The boundary conditions are: 

Z 8 = Stan-’-  for x, 0 and z * 0, 
XI 

71 
6 = - -  for x I = >  - o o , z >  0, 2 

71 8 = - - for all x , ,  z 3 +m, 
2 

71 8 = + - for x, * -m,z < 0, 
2 

71 
8 = + - for all x,, z -a. 2 

We seek weak field solutions (d * m) valid in the proximity of the disclination. 
Performing a parametric expansion in l/d2, scaling lengths with d(2, = x,/d; 
Z = z / d ) ,  and retaining the first order term, we obtain 

(39) 
where 8, is the disclination line solution, and $ is the perturbation due to the presence 
of the wall. Replacing equation (39) into the scaled equation (32) we obtain the set 

Kfi, z”) - 8, + *, 

P20, = 0, (40 a) 

The solution to equation (40 a) is given by 
- 

A separation of variables solution to equation (40 h) of the form 

+ = R(F)sina, (42) 
where (P,  a) are scaled polar coordinates (2 = P C O S ~ ,  Z = Psina), results in an 
ordinary differential equation for R 

d2R 1 dR R A,Sdv - +  = ___ 
dP2 P dP P2 KP ’ 

(43 a> 
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326 A. D. Rey 

Its general solution is 

A ,  Sdv 
2K 

R = -  ?In? + cIr". 

Finally, the perturbation $ of the inversion wall on the line is given by 

vd, Sd 
2K 

$ = -  Zlnr" + c,Z. 

(43 h)  

(44) 

To find the value of the constant c1 we use the fact that the x-component of the 
Peach-Koehler force exerted by a director displacement $ on the disclination is given 
by ~301 

The force on the disclination is already given by equation (30 a). To calculate the force 
according to equation (45) we calculate the limiting behavior of (a$/&) at the origin 
and get 

i3$ cI2nSK F, = lim 2nSK- = ~ 

.x,r-O az d '  

where we assumed that v + 0 as d 00 at least as fast as l n i  + 0 as r" = 0. The 
validity of this assumption will be proven shortly. An explicit expression for cI , valid 
for weak fields is obtained from equations (30a) and (46) 

1 
C' = - 

71s' 

The dynamics of the director field around the disclination line, in the weak magnetic 
field approximation, is given by 

P vd,Sd 1 
xI 2K 71s 

0 - Stan-': + - Zlnr" + -2. (47) 

To obtain the velocity of the disclination line, caused by the pulling force exerted 
by the wall, we use the entropy balance equation [16, 311 

F,v = TS, (48) 
where S is the entropy production per unit length and per unit time, and is given in 
the L-E theory by 

if back-flow effects are neglected and the director field is planar [32]. It follows from 
equation (40b) that 

Replacing the right-hand side of equation (50) into equation (49) and performing the 
integration using polar coordinates, gives the entropy production to first order, 

2n 

TS = v2d,S2 jo (sins)* da j r : r p '  dr = nv2dIS21n 
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Defect controlled dynamics 327 

where r, is a molecular cut-off length introduced to avoid infinite energies [16, 181 and 
of the order of tens of Angstroms. The entropy production for a travelling disclination 
line embedded in a uniform director field is usually calculated using equation (1 1 c) 
and neglecting the velocity term [26, 31, 331. The results agree with equation (51) 
except that a macroscopic distance replaces our inversion wall thickness. This consist- 
ency confirms the results (equation (47)) and the ordering of our perturbation analysis 
(equation (39)). 

Finally, replacing the result of equation (51) and the value of the force F, into 
equation (48) gives the expression for v as 

2K 
nl, dS2 In (d/rc)  ' 

v =  

As expected, the velocity scales with the inverse of the wall thickness, as the surface 
tension does. This scaling proves that the assumption used in obtaining equation (46) 
is correct. For vanishing field strengths not only does v vanishes but even the product 
vd vanishes as well. Lines involving stronger director distortions (larger S )  will travel 
slower. Since v is a velocity describing convection of orientation it scales with the ratio 
of elastic to viscous effects ( K / l l ) .  

By replacing the value of v into equation (47) we obtain the director field in the 
proximity of the disclination line, as a function of the wall thickness d, the strength 
S of the disclination line defect, valid for weak fields, 

- 
(53) 

1 
Zln? + - 2 .  

z 1 
6 - Stan- ' -  + 

2' nS In (d/rc)  71s 

The growth law of parallel alignment (homogeneous texture) is given by 

dL 3L,nS2dL 
In @/r,) 2K (54) 

The growth law describes the phase transformation from banded textures to homo- 
geneous textures. The spatial growth of the new phase is linear in time. It gives the 
time required to dissolve a length L of splay-bend inversion wall of thickness d by the 
dislacement of the disclination line of strength S. For typical values of nematic 
polymers: A, = 30poise, K = 10-6dynes, r, = 30~ngstroms,  d = 5pm, the dis- 
placement of the line will dissolve 0.08 cm of inversion wall per hour. 

5. Splay-bend wall-disclination pair dynamics 
In this section we analyze a disclination pair of strength k 1/2 embedded in the 

inversion wall, shown in figure 3 (c). In contrast to a single disclination line embedded 
in an inversion wall, there is no circuit enclosing one of the lines along which we know 
the director pattern a priori. That fact allowed us to calculate the constant c, and the 
main results of the previous section. We now assume that linear superposition is valid, 
although we note that the Ericksen stress tensor is non-linear. This is equivalent to 
assume that the director pattern between the disclinations is not affected by the 
presence of the surrounding wall. The magnitude of the force acting on each disclina- 
tion line is 
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where the second term on the right-hand side is the force of attraction between the 
disclination line pair of opposite signs separated by a distance L [16, 311. We note that 
with this approximation the lines of strength & 1/2 get closer, separate, or remain at 
a constant distance whenever L is smaller, larger, or equal to rcd/4, respectively. The 
existence of a critical distance for the dissolution of the banded textures is analogous 
to the existence of a critical droplet radius in the nucleation and growth of a new phase 
in a metastable phase during a first order phase transition. 

We now follow the sequence of steps given in the previous section with minor 
changes. We seek a solution to equation (12) describing a slay-bend inversion wall 
with a disclination line pair of strength f S embedded in it. We fix the coordinate 
system on one of the lines, say line 1 of strength + S. Again, the magnetic and director 
fields are H = ( H ,  0, 0) and n = (sine, 0, C O S ~ ) ,  respectively. The boundary con- 
ditions are given by Equations (34-38) and 

Z Z 8 = ,Ytan-'- - Stan-'---- for xI * 0 and z * 0. 
XI XI + L 

As before we use i S for the strengths of the lines, but note that walls collapse with 
production of & 1/2 disclination lines [20, 331. We seek weak field solutions valid in 
the proximity of line 1 (The same analysis applies to line 2). Performing a parametric 
expansion in I/&, scaling lengths with d (a, = xl / d ;  i = z / d ) ,  and retaining the first 
order term, we obtain 

e(a,, 2) - 0; + (56)  
where 0; is the disclination line pair solution, and $' is the perturbation due to the 
presence of the wall on line 1. The equations for 6; and $ I  are (40a) and (40h) 
respectively. The solution to equation (40 a)  describing a line pair, separated by a 
distance L,  in a frame fixed at  the line of strength +S is 

(57 4 

where 
splay-bend wall in the proximity of line 1 is 

= L/d  is the scaled distance between the lines. The perturbation due to the 

where we have used the equality between equations (46) (evaluated using equation 
(57 h)  and equation ( 5 5 )  to calculate the corresponding c ,  constant, as we did in the 
previous section). The dynamics of the director field in the proximity of line 1, in the 
weak field approximation, is 

To calculate the velocity of the lines we use the entropy balance equation (49). 
Following the same procedure as in the previous section, we obtain the entropy 
production due to the moving disclination line, to first order, as 

TS = rcAl uz Sz In (L / rc ) ,  (59) 

where the area of integration is a circular region of inner radius rc and outer radius 
L - rc .  Again, i t  is instructive to compare previous calculations of the entropy 
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production for the case of a disclination line pair whose separation is changing in 
time, and is embedded in a homogeneous director field [26]. That calculation uses the 
dissipation due to the line pair and neglects the velocity terms in equation (57a). It 
nevertheless agrees with our result (equation (59)) except for a numerical factor 
(1.21 3) multiplying L in the logarithmic term, arising from the fact that it is based in 
the dissipation of the disclination pair solution, and our calculation is based the 
dissipation of each line, using the perturbation of the wall on the line. Again, this 
consistency validates our results (equation (58) and our ordering (equation (56)). 
Using equation (48, 55, 59) we obtain the velocity of the travelling disclination line, 
embedded in a director field containing another disclination line and a splay-bend 
inversion wall, 

For very large separations we retrieve the wall-single line equation (the upper limit of 
the integral in equation (59) is changed from L to d ) .  At the critical line separation 
L, = .ndS2, the velocity vanishes. For line separations larger (smaller) than the critical 
one the distance increases (diminishes) with time. 

The director field in the proximity of line 1, as a function of wall thickness d, line 
separation L, and defect strengths 5 S is, in the weak magnetic field approximation 

(61) 
As expected, for L 9 d we retrieve the wall-single line solution and each line behaves 
as in the previous section. 

If the initial line separation is larger than the critical L,,  then the homogeneous 
textures will replace the banded textures. The growth law governing the kinetics of the 
transformation is 

where LO is the initial line separation. Integrating, we obtain 

where q = d 2 d .  The growth law describes the phase transformation fsom banded 
textures to homogeneous textures. It gives the time required to dissolve a length L of 
splay-bend inversion wall of thickness d by the displacement of the disclination line 
pair of strength Ifl S.  The first term in the series gives the asymptotic late stage growth 
law, valid at long times. 

6. Discussion 
The banded textures are metastable and the system will not remain in this state but 

eventually will reach the true equilibrium state. If an initially aligned nematic liquid 
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is subjected to a magnetic field orthogonal to the initial orientation, the system 
develops a set splay-bend inversion walls separated by aligned regions. The nematic 
liquid will not remain in this state because there is a lower energy state consist- 
ing of coalignment of the director with the magnetic field (if xd > 0). To reach 
this lower energy state the system nucleates inversion wall-free regions by the produc- 
tion of a disclination line pair. The analogous concept of a drop in the nucleation and 
growth of a new phase in a metastable phase is the collapsed wall bounded by the 
disclination pair. The surface tension of the drop is'the line-line interaction in 
our case. 

In $2 we showed that the walls are unstable to two dimensional perturbations. 
When the critical threshold given by &pation (23) is exceeded, small segments of wall 
will collapse with the production of an array of disclination line pairs of strength 
f 112. We can assume that the collapsed wall segments are far apart such that we can 
neglect their interaction. According to equilibrium nucleation theory the number of 
droplets of size L is 

nL = Nexp -ELIkT (64) 

where EL is the free energy of formation of a droplet of size L, k is the Boltzmann 
constant, and 7' the temperature. N is a normalization constant. There are bulk and 
surface contributions to EL. The bulk term Eb is the energy required to eliminate a 
wall of length L, that is, the energy required to rotate the director so that a parallel 
alignment is obtained, 

E b  = -oLd, (65)  

where o is the surface tension of the wall given by equation (30 b). The surface term 
E, is the energy required to nucleate a disclination line pair [I61 

(66) 
L 
r c  

E, = 2nS'Kln- d. 

The free energy of formation of a collapsed wall segment with the production of a 
disclination line pair is 

L 
r c  

EL = - oLd i- 2nS2Kln- d. 

There is a competition between the energy required to collapse the wall (bulk term) 
and the energy of the disclination line pair (surface term). The disclination energy 
dominates at small L while the bulk term dominates at large L. As a consequence 
there is a critical distance Lc obtained from the condition (dEL/dL) = 0, 

2nS2 K 
L, = - = nS2d. 

0- 

Collapsed wall segments of lengths larger than L, will grow since they are energetically 
favored. These collapsed wall segments provide the mechanism of decay from the 
metastable state. The effect of increasing the magnetic field strength is to decrease the 
critical length. The rate of production I of collapsed wall segments, larger than the 
critical size, in a non-equilibrium steady-state is [27] 

I = I ,exp -E,JkT (69) 
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Figure 5. Inversion wall-parallel alignment transformation diagram. The horizontal line 
corresponds t o  the critical line separation L,. The curve is the inversion wall stability 
threshold (equation (23)). A ,  walls are unstable, collapsed wall segments shrink; B, walls 
are stable; C, walls are stable; D, walls are unstable, collapsed wall segments grow. 

where I, is the nucleation rate prefactor. This describes a thermally activated process, 
in  which the energy of activation is the energy of formation of a critical collapsed wall 
segment 

EL, = 2nS2K [In( T) - I] d. 

A banded-homogeneous texture transformation diagram is shown in figure 5. It 
is obtained by plotting equations (23) and (68). These are four areas in the diagram: 
two above the horizontal line ( A ,  B)  showing the shrinkage of collapsed wall segments 
of length L < L,, and two below (C, D) the horizontal line showing the growth of 
collapsed wall segments of length L > L,. Even if the wall is unstable in area A ,  the 
initial line separation is not large enough to transform a wall into parallel alignment. 
In area B and C there is not enough elastic anisotropy for a wall collapse. Area D 
spans the magnitudes of L, d, and K22/K33 for which a wall segment, unstable to two 
dimensional perturbations, will grow after its collapse. For actual nematics the elastic 
anisotropy required for wall instability is normally met. For example, for PLG 
(a nematic polymer) K22/K33 = 0.07 [29], while for MBBA (a low molar mass 
nematic) K22/K33 = 0.454 [34]. The smaller the elastic anisotropy, the larger the 
critical length L,,  the higher the energy of activation E, and the smaller the nucleation 
rate. 

The main result of this work is growth law for homogeneous alignment given by 
equation (63). It can be used to estimate the time required to consume a length of 
inversion wall by the growth of a number nL of collapsed wall segments of length 
L > L,. If we have nL droplets of average size L, the length L ,  of wall consumed in 
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time t is 
L,. = n , L ,  

where L is given by equation (63). Better estimates require the time dependent size 
distribution function. Eventually we expect that the growing collapsed wall segments 
will interact with each other. Since the line pairs are embedded with alternate ordering 
in strength (+ - or - +) the approaching lines, separated by pulling wall segments, 
have different signs and will attract and annihilate each other. The final equilibrium 
state is a homogeneous texture with few or no disclination lines left. 

In conclusion, the L-E theory of nematic continua is able to account for the 
collapse of inversion walls into pairs of disclination lines as seen experimentally. The 
effect of the surface tension of the wall is to pull the lines apart, thereby replacing a 
highly distorted director field for a homogeneous parallel alignment. The L-E theory 
is able to describe the kinetics of the metastable stage during the approach to 
equilibrium of important dynamical liquid crystal phenomena. 

This work is supported by a grant from Fonds pour la Formation de Chercheurs 
et 1'Aide a la Recherche of Quebec, Canada. 

Appendix I 
The coefficients of the evolution equation (14) are 

A(8)  = [3(K3, - K2,)cos20 + K2,]8; + [-K33~0t8 + (K3? - K2,)sin8cos6]0,,, 

(A 1) 

B(6)  = [(K22 - K3,)sin28]8,, (A 2) 

c(e> = [(K33 - ~ 2 , ) c 0 s 2 ~ 1 ~ , ,  (A 3) 

D ( 0 )  = (K33 - K 2 2 ) ~ ~ ~ 2 d  + K22, (A 4) 

E(8)  = (KZ2 - K?3)cos2B + K33. (A 5 )  

F(6)  = (K33 - K2,)sin28. (A 6) 

Appendix I1 
To evaluate the integral in equation (24), we choose a square circuit L(a) enclosing 

the line defect and let the sides a of the square increase to infinity. The circuit is 
traversed counter-clockwise, and the outward unit normals are the unit vectors in the 
+x and fz directions (k i ,  +k) .  The boundary conditions given by equations 
(25)-(29) indicate that the second term in the Ericksen stress tensor (equation (5)) 
makes no contribution along the chosen circuit. The z component is 

r r r - m  

The x-component is 

t;,dl, = lim t;)dl, = W ( x  = + 03, z )  dz, 
Ft = I,,,) U 3 Z  Laj 

W ( X  = + cc). z )  dz. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
1
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Defect controlled dynamics 333 

The total free energy density is [ 161 

W = +[K,,(V * n)’ + Kz2(n - V x n)’ + 11 n x V x n 11’1 - +x,(n.H)’ 
+ 0 independent term. (A 9) 

Replacing the given director and magnetic fields H = (H ,  0, 0) and n = (sin 0, 0, cos 6) 
gives 

W ( x  = + co, z )  = 5 (E)I - sin2@ + 6 independent term. (A 10) 2 dz 

The inversion wall satisfies equation (8) whose first integral is 

Using this equality the free energy density becomes 

W ( x  = + co, z )  = K + 0 independent term. (A 12) 

Replacing this value into equation (A.8) gives 

where we used 
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